Characterization of a microsomal retinol dehydrogenase gene from amphioxus: retinoid metabolism before vertebrates.
نویسندگان
چکیده
Amphioxus, a member of the subphylum Cephalochordata, is thought to be the closest living relative to vertebrates. Although these animals have a vertebrate-like response to retinoic acid, the pathway of retinoid metabolism remains unknown. Two different enzyme systems - the short chain dehydrogenase/reductases and the cytosolic medium-chain alcohol dehydrogenases (ADHs) - have been postulated in vertebrates. Nevertheless, recent data show that the vertebrate-ADH1 and ADH4 retinol-active forms originated after the divergence of cephalochordates and vertebrates. Moreover, no data has been gathered in support of medium-chain retinol active forms in amphioxus. Then, if the cytosolic ADH system is absent and these animals use retinol, the microsomal retinol dehydrogenases could be involved in retinol oxidation. We have identified the genomic region and cDNA of an amphioxus Rdh gene as a preliminary step for functional characterization. Besides, phylogenetic analysis supports the ancestral position of amphioxus Rdh in relation to the vertebrate forms.
منابع مشابه
Evolution of Retinoid and Steroid Signaling: Vertebrate Diversification from an Amphioxus Perspective
Although the physiological relevance of retinoids and steroids in vertebrates is very well established, the origin and evolution of the genetic machineries implicated in their metabolic pathways is still very poorly understood. We investigated the evolution of these genetic networks by conducting an exhaustive survey of components of the retinoid and steroid pathways in the genome of the invert...
متن کاملEnzymatic Metabolism of Vitamin A in Developing Vertebrate Embryos
Embryonic development is orchestrated by a small number of signaling pathways, one of which is the retinoic acid (RA) signaling pathway. Vitamin A is essential for vertebrate embryonic development because it is the molecular precursor of the essential signaling molecule RA. The level and distribution of RA signaling within a developing embryo must be tightly regulated; too much, or too little, ...
متن کاملUnderstanding retinol metabolism: structure and function of retinol dehydrogenases.
Retinoids (vitamin A derivatives) have dual functions in physiology. 11-cisRetinal serves as the universal chromophore of the visual pigments in the eye, and the hormonal retinoids, mainly all-transand 9-cis-retinoic acid (RA),2 regulate the expression of target genes via activation of two classes of nuclear retinoid receptors, the retinoic acid receptors (RARs), and the retinoid X receptors (R...
متن کاملFamilies of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid.
Vitamin A (retinol) and provitamin A (beta-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate ge...
متن کاملStereoisomeric specificity of the retinoid cycle in the vertebrate retina.
Understanding of the stereospecificity of enzymatic reactions that regenerate the universal chromophore required to sustain vision in vertebrates, 11-cis-retinal, is needed for an accurate molecular model of retinoid transformations. In rod outer segments (ROS), the redox reaction involves all-trans-retinal and pro-S-NADPH that results in the production of pro-R-all-trans-retinol. A recently id...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemico-biological interactions
دوره 130-132 1-3 شماره
صفحات -
تاریخ انتشار 2001